
www.epstrategies.com

WLM Management of DDF Work:
What can you do and what has changed?

Scott Chapman

Enterprise Performance Strategies, Inc.

Scott.Chapman@EPStrategies.com

www.epstrategies.com

Contact, Copyright, and Trademarks

Questions?

Send email to performance.questions@EPStrategies.com, or visit our website at https://www.epstrategies.com or
http://www.pivotor.com.

Copyright Notice:

© Enterprise Performance Strategies, Inc. All rights reserved. No part of this material may be reproduced, distributed,
stored in a retrieval system, transmitted, displayed, published or broadcast in any form or by any means, electronic,
mechanical, photocopy, recording, or otherwise, without the prior written permission of Enterprise Performance
Strategies. To obtain written permission please contact Enterprise Performance Strategies, Inc. Contact information can
be obtained by visiting http://www.epstrategies.com.

Trademarks:
Enterprise Performance Strategies, Inc. presentation materials contain trademarks and registered trademarks of several
companies.

The following are trademarks of Enterprise Performance Strategies, Inc.: Health Check®, Reductions®, Pivotor®

The following are trademarks of the International Business Machines Corporation in the United States and/or other
countries: IBM®, z/OS®, zSeries®, WebSphere®, CICS®, DB2®, S390®, WebSphere Application Server®, and many others.

Other trademarks and registered trademarks may exist in this presentation

© Enterprise Performance Strategies 2

mailto:performance.questions@EPStrategies.com
https://www.epstrategies.com/
http://www.pivotor.com/

www.epstrategies.com

Abstract

Managing DDF workloads can be somewhat tricky because DDF can be quite
variable. You may have an application where each row inserted is an
extremely short transaction. Or you may have QMF users who submit queries
that run for hours or even days. And you probably have a lot of DDF work that
falls in-between but which varies in both importance and intensity.
Historically, the full range of WLM goal types and controls were available to
help manage this challenging workload. But now, in some situations, that’s no
longer the case. If you use DDF and want to better understand the WLM
options for managing the work, and especially if you’re using (or may use)
high performance DBATs, you should attend this presentation to better
understand how to take control of DDF.

© Enterprise Performance Strategies 3

www.epstrategies.com

EPS: We do z/OS performance…

●Pivotor - Reporting and analysis software and services
◦ Not just reporting, but analysis-based reporting based on our expertise

●Education and instruction
◦ We have taught our z/OS performance workshops all over the world

●Consulting
◦ Performance war rooms: concentrated, highly productive group discussions and analysis

●Information
◦ We present around the world and participate in online forums

www.epstrategies.com

z/OS Performance workshops available

During these workshops you will be analyzing your own data!

●Essential z/OS Performance Tuning
◦ March 20-24, 2023

●WLM Performance and Re-evaluating Goals
◦ TBD 2023

●Parallel Sysplex and z/OS Performance Tuning
◦ February 7-8, 2023

●Also… please make sure you are signed up for our free monthly z/OS
educational webinars! (email contact@epstrategies.com)

www.epstrategies.com

Like what you see?

●The z/OS Performance Graphs you see here come from Pivotor™

●If you don’t see them in your performance reporting tool, or you just want a
free cursory performance review of your environment, let us know!

◦ We’re always happy to process a day’s worth of data and show you the results

◦ See also: http://pivotor.com/cursoryReview.html

●We also have a free Pivotor offering available as well
◦ 1 System, SMF 70-72 only, 7 Day retention

◦ That still encompasses over 100 reports!

http://pivotor.com/cursoryReview.html

www.epstrategies.com

Agenda

●The Story of DB2 and DDF

●Traditional WLM options for managing DDF

●Updated WLM management limitations with DDF High-Perf DBATs

© Enterprise Performance Strategies 7

The Story of
DB2 and DDF

“Illustrated” by AI (Stable Diffusion Text to Image AI)

© Enterprise Performance
Strategies

9

In the beginning…
There was DB2 and it was good, and all

systems wanted to move across the
waters and access the data stored in the

walled garden of the mainframe.

And so the Distributed Data Facility arose
to allow the plebeians’ SQL to run in DB2.

And all rejoiced for they could access the
holy data.

Except for the performance analysts who
were distraught, for they could see that
the DDF SQL ran within the DB2 “DIST”

address space at the same priority of the
address space and they were much afraid.

And verily it did happen that the
plebeians wrote poor SQL which ran at

the same priority as the senators’ SQL and
the senatorial SQL was delayed, thus

angering the senators.

So the senators appealed to Emperor
Maximus Virtuous Servitus:

“The great empire depends on the timely execution of our
most glorious and efficient SQL and it must have a higher
priority than the plebeian SQL, some of which bears the
stench of automatic generation and runs overlong and
consumes valuable resources at the expense of more

deserving workloads.”

Hearing their complaint, Emperor MVS
(the 5.2nd of his name) decreed that there

should be enclaves and all distributed SQL
would thereafter run in enclaves and in
doing so be managed individually and

separately from the “DIST” address space.

And so it came to be that the favored
senators’ SQL ran with great abandon at a
priority above the plebeian’s SQL and the

stinky SQLs that had aged poorly ran
behind others, no longer delaying the

most glorious and efficient SQL.

The senators’ SQL ran in milliseconds.
The plebians SQL ran in seconds.

While Quericus Maximus Festivus wasn’t
completely happy, his stinky SQL

eventually finished.
The empire was at peace for over a

quarter century.

But was it the end?

www.epstrategies.com

TLDR…

●DDF SQL originates from a network connection to DB2
◦ Usually a TCP connection from a different OS

●DDF SQL run in enclaves which allows the SQL transactions to be individually
managed

●Also: relying on AI to illustrate your story is far from perfect, but fascinating
that it works as well as it does

© Enterprise Performance Strategies 20

www.epstrategies.com

John Awre said it succinctly

© Enterprise Performance Strategies 21

Enclaves allow the management of individual

transactions flowing through address spaces,

something that simply has never been possible

before. Since MVS is aware of and has access to

each transaction, they can be classified individually

and most importantly each transaction is subject to

period switch. This means that you can separate out

the long-running CPU killers from the shorter

requests in the same manner that most installations

already employ to control batch, by period-level

controls.

Enclaves allow the management of individual

transactions flowing through address spaces,

something that simply has never been possible

before. Since MVS is aware of and has access to

each transaction, they can be classified individually

and most importantly each transaction is subject to

period switch. This means that you can separate out

the long-running CPU killers from the shorter

requests in the same manner that most installations

already employ to control batch, by period-level

controls.

From whitepaper “Preemptible SRBs”, John Arwe
Exact date unknown, c. introduction of MVS 5.2 (1995)
Emphasis mine

Each enclave is a single transaction, which starts

when the enclave is created and ends when the

enclave is deleted. DDF creates an enclave for an

incoming request when it detects the first SQL

statement and deletes the enclave at SQL COMMIT,

thus a DDF enclave transaction consists of a single

SQL COMMIT scope.

Each enclave is a single transaction, which starts

when the enclave is created and ends when the

enclave is deleted. DDF creates an enclave for an

incoming request when it detects the first SQL

statement and deletes the enclave at SQL COMMIT,

thus a DDF enclave transaction consists of a single

SQL COMMIT scope.

In WLM goal mode, all goal types are valid for

enclaves.

In WLM goal mode, all goal types are valid for

enclaves.

www.epstrategies.com

SUs and Period Transitions

● For Service Classes with multiple periods, work transitions between periods as it
consumes resources (CPU)

● Each period has its own importance and goal

● So we can automatically adjust the management of long-running work
◦ E.G. lower the importance and relax the goal so the hogs don’t trample the hummingbirds

◦ Very useful when a workload contains a mix of light and heavy work

© Enterprise Performance Strategies 22

Period 1

Period 2

Period 3

www.epstrategies.com© Enterprise Performance Strategies 23

Managing DDF work with WLM

www.epstrategies.com

DDF is a bit tricky…

●SQL transactions can be quite variable
◦ Can be 1 SQL statement or could be multiple SQL statements

◦ Could be well-controlled and well-written SQL or could be random adhoc SQL

◦ Could access very little data from memory or could read GBs from disk

◦ Could run in milliseconds or seconds or minutes or hours or…

●SQL may come from applications unknown to the performance analyst
◦ With an appropriate JDBC or ODBC driver and appropriate authorization, all sorts of

things can reach into DB2
◦ Basically almost anything that can generically read from a relational data source

●Some DDF SQL may be for “online” users, others may be “batch” work

●Poorly managed DDF can cause problem for other workloads on the system

© Enterprise Performance Strategies 24

www.epstrategies.com© Enterprise Performance Strategies 25

Here period 1 of DDFP is
often getting an average
response time of single-
digit milliseconds.

Here period 1 of DDFP is
often getting an average
response time of single-
digit milliseconds.

www.epstrategies.com© Enterprise Performance Strategies 26

Period 2 of DDFP is
averaging more like
single-digit seconds
(1000x longer)

Period 2 of DDFP is
averaging more like
single-digit seconds
(1000x longer)

www.epstrategies.com© Enterprise Performance Strategies 27

And period 3 for this
DDF work is usually
above 50 seconds and
often above 100
seconds.

Long transactions can be
100,000x longer than
short transactions.

And period 3 for this
DDF work is usually
above 50 seconds and
often above 100
seconds.

Long transactions can be
100,000x longer than
short transactions.

www.epstrategies.com© Enterprise Performance Strategies 28

The vast, vast majority of
transactions end in
period 1. (But in this
case there may be 10s-
100s of thousands in
P2/P3.)

And that 100,000x
increase in elapsed time
from P1 to P3 probably
has a similar correlation
in CPU time.

The long tail may have a
significant stinger.

The vast, vast majority of
transactions end in
period 1. (But in this
case there may be 10s-
100s of thousands in
P2/P3.)

And that 100,000x
increase in elapsed time
from P1 to P3 probably
has a similar correlation
in CPU time.

The long tail may have a
significant stinger.

www.epstrategies.com© Enterprise Performance Strategies 29

Here we see indeed P3
consumed a significant
portion of the overall
DDFP CPU.

Often, we’ll see P3
consuming even more
CPU than P1.

Here we see indeed P3
consumed a significant
portion of the overall
DDFP CPU.

Often, we’ll see P3
consuming even more
CPU than P1.

Well-behaved period

Safety period

Penalty period

www.epstrategies.com

Penalty Period FUD

●Some people may say “Don’t age DDF to low importance!” or “Never run DDF as
discretionary!”

◦ Those people may love DB2 too much (or possibly remember old problems too well)

●Usually the worry is “that work might hold a lock or latch that might hold up more
important work”

◦ The same is true for batch jobs using DB2 too! Batch is commonly run at low importance or
discretionary.

● Importances are relative: you can’t judge an importance by its number without
understanding the work running at all importances

●Modern DB2 and WLM work together to promote work to resolve locking/latches
◦ Chronic Resource Contention allows DB2 to signal to WLM that specific work should be

promoted to allow a lock to be released
◦ Blocked Workload Promotion promotes any work that hasn’t been able to get CPU in a

specified time period (usually 1-5 seconds) so that it can release locks/latches

© Enterprise Performance Strategies 30

www.epstrategies.com© Enterprise Performance Strategies 31

CRM Promotion happens

Here the third period of
that DDFP work got
promoted more than
anything else.

Note in this case period
3 is importance 3, and it
still needed help.

There was even
apparently some
instances of
discretionary work being
promoted.

CRM Promotion happens

Here the third period of
that DDFP work got
promoted more than
anything else.

Note in this case period
3 is importance 3, and it
still needed help.

There was even
apparently some
instances of
discretionary work being
promoted.

www.epstrategies.com© Enterprise Performance Strategies 32

Note that for much of
the day there’s relatively
little work in
importances 4 and
(especially) 5.

There’s room to spread
out work to make better
potential use of all
importance levels.

Note that for much of
the day there’s relatively
little work in
importances 4 and
(especially) 5.

There’s room to spread
out work to make better
potential use of all
importance levels.

www.epstrategies.com

Understand the application

●What work is more important?
◦ Extremely short transactions may really be a batch process doing singleton SQLs

◦ E.G. millions of single row inserts, each a separate transaction

◦ “Long” transactions may just be because your customers don’t call in sorted order
◦ First access for a customer call will be random and will likely not be in the buffer (absent big

buffers)

◦ That first random access may have to do a bunch of I/O to fetch the customer data

◦ The time to fetch the customer info may directly impact customer satisfaction

●Managing DDF without understanding the application risks making incorrect
decisions about the relative importance of work

◦ The duration of a transaction is not necessarily an indication of importance

◦ Getting trivial transactions in and out quickly may be good, but may not be optimal

●Use separate SCs for batch-like vs. online-like work

© Enterprise Performance Strategies 33

www.epstrategies.com

DDF Management Recommendations

●Don’t be afraid of using multiple DDF Service Classes!

●Make liberal use of Report Classes (e.g. by authid)
◦ Helps determine what application is doing how many transactions and consuming how much

CPU: all from the SMF 72 records without having to look at the voluminous 101s

◦ For things like QMF with a large number of adhoc users, may look for correlation IDs

●Treat your default DDF Service Class like batch
◦ Default should generally not be “like online users”

◦ Also helps catch new DDF exploiters to get them classified to a good RC

●Consider 2-3 period SCs, except for work that is well-known and well-behaved
◦ 3rd period may be a “penalty period” for those outliers

●Consider RT goals for first 1 or 2 periods
◦ Generally easier to describe, monitor, and relate to application performance

© Enterprise Performance Strategies 34

www.epstrategies.com© Enterprise Performance Strategies 35

What has changed?

www.epstrategies.com

Upending >25 Years of DDF Management

© Enterprise Performance Strategies 36

Enclaves allow the management of individual

transactions flowing through address spaces,

something that simply has never been possible

before. Since MVS is aware of and has access to

each transaction, they can be classified individually

and most importantly each transaction is subject to

period switch. This means that you can separate out

the long-running CPU killers from the shorter

requests in the same manner that most installations

already employ to control batch, by period-level

controls.

Enclaves allow the management of individual

transactions flowing through address spaces,

something that simply has never been possible

before. Since MVS is aware of and has access to

each transaction, they can be classified individually

and most importantly each transaction is subject to

period switch. This means that you can separate out

the long-running CPU killers from the shorter

requests in the same manner that most installations

already employ to control batch, by period-level

controls.

Each enclave is a single transaction, which starts

when the enclave is created and ends when the

enclave is deleted. DDF creates an enclave for an

incoming request when it detects the first SQL

statement and deletes the enclave at SQL COMMIT,

thus a DDF enclave transaction consists of a single

SQL COMMIT scope.

Each enclave is a single transaction, which starts

when the enclave is created and ends when the

enclave is deleted. DDF creates an enclave for an

incoming request when it detects the first SQL

statement and deletes the enclave at SQL COMMIT,

thus a DDF enclave transaction consists of a single

SQL COMMIT scope.

In WLM goal mode, all goal types are valid for

enclaves.

In WLM goal mode, all goal types are valid for

enclaves.

This is now the situation if your DDF work uses High Performance DBATs!
(With DB2 APAR PH34378)

Technically: multi-period service classes and RT goals still are allowed but they will not work as expected!
This could be a surprise when you apply the DB2 maintenance that made this change.

www.epstrategies.com© Enterprise Performance Strategies 37

DB2 Details for non-DB2 People…

Special thanks to Mark Rader for helping me with this!
But all opinions and conclusions are mine and not reflective of the opinions of Mark or his employer!

www.epstrategies.com© Enterprise Performance Strategies 38

What
The
Frak?

www.epstrategies.com

WTF is a DBAT?

●Database Access Thread

●How DDF traffic connects to DB2
◦ Vs. CICS/Batch/etc. which connect directly from those address spaces

●Consists of the thread (large) and connection (tiny)

●As a thread is used, it tends to grow and become “fat”
◦ So can’t keep them around forever

●Threads have to have a place to run: for DDF that’s an enclave
◦ DB2 creates the enclave to run the DBAT in (since MVS 5.2, DB2 v4)

© Enterprise Performance Strategies 39

Thread

Connection

Older
Thread

Connection

www.epstrategies.com

DB2 zPARM Options

●CMTSTAT – Commit Status – what happens when the application does a
commit?

◦ ACTIVE – connection holds the DBAT which remains active and unusable by any other
thread

◦ INACTIVE – separate the connection from the DBAT and allow the DBAT to be reused
(generally, may just shrink)

◦ INACTIVE has long been the default and recommendation because it reduces storage
usage at the slight cost of re-associating the connection to a DBAT upon the next SQL
from the connection

●POOLINAC – Approximate time a DBAT can remain inactive in the pool
before it is terminated

◦ Defaults to 120 seconds (but thread age is only checked periodically (2 min?))
Q) WTF is zPARM?
A) DB2 config options
Q) WTF is zPARM?
A) DB2 config options

www.epstrategies.com

Bind Options

●Release – what happens to resources/locks at commit
◦ COMMIT – releases locks and resources when the application issues a commit or

rollback in most cases except if there are held cursors, keepdynamic(yes), declared
global temp table (DGTT) that is not dropped, or LOB locators

◦ DEALLOCATE – only release when the thread terminates

●KEEPDYNAMIC – keep dynamic SQL past commit point
◦ YES – do that, so DB2 doesn’t have to re-prepare the SQL if it’s reused

◦ Thread stays associated with the connection, but accounting records cut & enclave deleted

◦ NO – don’t keep them, reprepare dynamic SQL if it’s reused
◦ Default and generally recommended

Q) WTF is “Bind”?
A) Very basically: DB2 records the options, description, and (potentially) SQL access paths for
the application program in the DB2 system catalog so the program can be used.
Also note: “package” = program, “plan” = group of packages for an application.

Q) WTF is “Bind”?
A) Very basically: DB2 records the options, description, and (potentially) SQL access paths for
the application program in the DB2 system catalog so the program can be used.
Also note: “package” = program, “plan” = group of packages for an application.

www.epstrategies.com

DDF Option

●PKGREL (set by MODIFY DDF command)
◦ BNDOPT or BNDPOOL – Allows for high performance DBATs

◦ COMMIT – Disables high performance DBATs

●Can find with Display DDF DB2 command
-DISPLAY DDF DETAIL
DSNL080I) DSNLTDDF DISPLAY DDF REPORT FOLLOWS: 211
DSNL081I STATUS=STARTD
DSNL082I LOCATION LUNAME GENERICLU
DSNL083I STLEC1 USIBMSY.SYEC1DB2 -NONE
DSNL084I TCPPORT=446 SECPORT=447 RESPORT=5001 IPNAME=XYZ_A
DSNL085I IPADDR=::9.30.178.50
DSNL085I IPADDR=ABCD::91E:B232
DSNL086I SQL DOMAIN=xyz_ahost.ibm.com
DSNL086I RESYNC DOMAIN=xyz_ahost.ibm.com
DSNL087I ALIAS PORT SECPORT STATUS
DSNL088I XYZ_S 448 449 STATIC
DSNL089I MEMBER IPADDR=::9.30.178.112
DSNL089I MEMBER IPADDR=ABCD::91E:B270
DSNL090I DT=A CONDBAT= 64 MDBAT= 64
DSNL092I ADBAT= 0 QUEDBAT= 0 INADBAT= 0 CONQUED= 0
DSNL093I DSCDBAT= 0 INACONN= 0
DSNL100I LOCATION SERVER LIST:
DSNL101I WT IPADDR IPADDR
DSNL102I 64 ::9.30.178.111 ABCD::91E:B26F
DSNL102I ::9.30.178.112 ABCD::91E:B270

DSNL105I DSNLTDDF CURRENT DDF OPTIONS ARE:
DSNL106I PKGREL = COMMIT
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

www.epstrategies.com

High Performance DBATs

●Allows some resources (such as table space intent locks and EDM pool
elements) to be retained in the DBAT across multiple transaction executions,
reducing the CPU overhead for subsequent transactions that access those
same resources

●Triggered by the thread calling a package bound with
RELEASE=DEALLOCATE, KEEPDYNAMIC(NO) and CMTSTAT(INACT) and
PKGREL=BNDOPT in effect

●DDF system packages are probably bound with RELEASE=COMMIT
◦ But sites can change this

●Possible for thread to end up running a different package due to invoking a
stored procedure or user defined function

◦ That package could have RELEASE=DEALLOCATE, causing the thread to become a
HiPerf DBAT even if the original package was RELEASE=COMMIT

www.epstrategies.com

WTF? Say the last part again?

●You think your DDF is not using HiPerf DBATs, but…

●An application programmer adds a call to a SP or UDF bound with
RELEASE=DEALLOCATE

●That DBAT may become a HiPerf DBAT (if the other conditions satisfied)

●And will remain so for the remainder of the SQL transactions it handles
◦ So some of the WLM transactions are SQL transactions, some are not

© Enterprise Performance Strategies 44

Life and times of DBATs, Connections, Enclaves:
CMTSTAT = ACTIVE (Not default, not recommended)

App A

Select Update Commit

Thread

Connection

En
cl

av
e

App Ends

● DB2 transaction <> WLM
Transaction

● WLM Transaction = life of
app

● Probably shouldn’t use RT
goals

● Could potentially use
multi-period goals to
degrade the app the
longer it’s consuming
resources

● DB2 transaction <> WLM
Transaction

● WLM Transaction = life of
app

● Probably shouldn’t use RT
goals

● Could potentially use
multi-period goals to
degrade the app the
longer it’s consuming
resources

Thread Pool

Life and times of DBATs, Connections, Enclaves:
CMTSTAT = INACTIVE (Without HiPerf DBATs)

App A

Select Update Commit

Thread

Connection

En
cl

av
e

App Ends

● WLM Transaction = DB2
transaction

● Can use RT or velocity
goals

● Could use multi-period
goals to better manage the
transaction the longer it’s
consuming resources

● Small number of DBATs
support large number of
connections

● Because they fatten up,
threads destroyed after
200 uses or 120 seconds
(default) (or some other
triggers)

◦ 500 uses in Db2 13

● WLM Transaction = DB2
transaction

● Can use RT or velocity
goals

● Could use multi-period
goals to better manage the
transaction the longer it’s
consuming resources

● Small number of DBATs
support large number of
connections

● Because they fatten up,
threads destroyed after
200 uses or 120 seconds
(default) (or some other
triggers)

◦ 500 uses in Db2 13

App B

Select Update Commit

Connection

En
cl

av
e

App Ends

Thread

Thread Pool

Life and times of DBATs, Connections, Enclaves:
CMTSTAT = INACTIVE (with HiPerf DBATs w/o PH34378)

App A

Select Update Commit

Thread

Connection

En
cl

av
e

App Ends

● WLM Transaction = DB2
transaction

● Can use RT or velocity
goals

● Could use multi-period
goals to better manage
the transaction the longer
it’s consuming resources

● May need more DBATs
since they’re not
returned to the pool as
quickly

● Threads destroyed as
previously

● WLM Transaction = DB2
transaction

● Can use RT or velocity
goals

● Could use multi-period
goals to better manage
the transaction the longer
it’s consuming resources

● May need more DBATs
since they’re not
returned to the pool as
quickly

● Threads destroyed as
previously

App B

Select Update Commit

Connection

En
cl

av
e

App Ends

Thread

Update Commit

Thread

Thread Pool

Life and times of DBATs, Connections, Enclaves:
CMTSTAT = INACTIVE (HiPerf DBATs w/ PH34378)

App A

Select Update Commit

Thread

Connection

En
cl

av
e

App Ends

● WLM Transaction =
multiple DB2 transactions

● 1 to 200 or 500 (DB2 v13)

● Realistically, must velocity
goals

● Multi-period goals are
problematic except as an
extreme penalty period

● E.g. very high duration on
period 1

● WLM Transaction =
multiple DB2 transactions

● 1 to 200 or 500 (DB2 v13)

● Realistically, must velocity
goals

● Multi-period goals are
problematic except as an
extreme penalty period

● E.g. very high duration on
period 1

App B

Select Update Commit

Connection

En
cl

av
e

App Ends

Thread

Update Commit

Thread

www.epstrategies.com

So why the change and why do we care?

●Apparently in some specific high-volume situations, retaining the enclave
and not allocating a new one for each transaction provides performance
benefit

◦ Seems like a small benefit, likely only visible in very high-volume situations

◦ One selling point of enclaves in 1995 was that they were light-weight!

●Would have been nice if DB2 would have added a flag/option for this
behavior but instead they just changed it for everybody!

●So now WLM administrators need to know what DDF work is potentially
using high-perf DBATs and change those to single-period velocity goals

◦ Which limits the flexibility of managing that DDF work

◦ This may be of limited consequence if that DDF work is well-behaved

How much of your DDF work is “well-behaved” vs “not so well-behaved”??

www.epstrategies.com

HighPerf DBATs for some DDF work?

●Note that it is possible that different DDF work could go to different
collections and packages

◦ How this is done is beyond the scope of this presentation!

●So if you don’t have PKGREL=COMMIT, some DDF work might be HiPerf
DBAT and some might not be

© Enterprise Performance Strategies 52

www.epstrategies.com

Help to report on actual DB2 transactions

●PH41024 Db2 support for WLM OA61811

●In combination, adds fields to SMF 72 records to report on actual DDF
transactions from the DB2 perspective instead of number of enclaves

●But does not change how the work can be managed!

●So you’ll still be able to get a count of DB2 transactions for accounting
purposes, but … that doesn’t help you manage the work

●At least we should be able to tell that HiPerf DBATs are in use by comparing
the DB2 transaction count to the WLM transaction count

www.epstrategies.com

Should you be using HiPerf DBATs?

●Not universally
◦ There are DB2 considerations (e.g. MAXDBAT, memory, holding resources)

◦ There are now WLM management considerations too

●For high-volume, well-behaved applications: maybe
◦ But those now need to have single-period velocity goals

© Enterprise Performance Strategies 54

www.epstrategies.com

Summary

●Understand your applications’ use of DDF and set appropriate Service Class
goals

●Use multiple Report Classes for capturing DDF consumption by application

●If you’re using High Performance DBATs, make sure you’re using single-
period velocity goals for that work

◦ An extreme penalty period may be possible, but your ability to manage DDF short,
medium, and long transactions is going to be compromised

●If you’re not using HiPerf DBATs, make sure your DB2 folks know to talk to
your WLM folks before enabling them

●IBM DB2 Support should talk to WLM Support more often

© Enterprise Performance Strategies 55

© Enterprise Performance Strategies 56

Questions??

Illustration Outtakes

	Slide 1: WLM Management of DDF Work: What can you do and what has changed?
	Slide 2: Contact, Copyright, and Trademarks
	Slide 3: Abstract
	Slide 4: EPS: We do z/OS performance…
	Slide 5: z/OS Performance workshops available
	Slide 6: Like what you see?
	Slide 7: Agenda
	Slide 9: The Story of DB2 and DDF
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: TLDR…
	Slide 21: John Awre said it succinctly
	Slide 22: SUs and Period Transitions
	Slide 23
	Slide 24: DDF is a bit tricky…
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Penalty Period FUD
	Slide 31
	Slide 32
	Slide 33: Understand the application
	Slide 34: DDF Management Recommendations
	Slide 35
	Slide 36: Upending >25 Years of DDF Management
	Slide 37
	Slide 38
	Slide 39: WTF is a DBAT?
	Slide 40: DB2 zPARM Options
	Slide 41: Bind Options
	Slide 42: DDF Option
	Slide 43: High Performance DBATs
	Slide 44: WTF? Say the last part again?
	Slide 47: Life and times of DBATs, Connections, Enclaves: CMTSTAT = ACTIVE (Not default, not recommended)
	Slide 48: Life and times of DBATs, Connections, Enclaves: CMTSTAT = INACTIVE (Without HiPerf DBATs)
	Slide 49: Life and times of DBATs, Connections, Enclaves: CMTSTAT = INACTIVE (with HiPerf DBATs w/o PH34378)
	Slide 50: Life and times of DBATs, Connections, Enclaves: CMTSTAT = INACTIVE (HiPerf DBATs w/ PH34378)
	Slide 51: So why the change and why do we care?
	Slide 52: HighPerf DBATs for some DDF work?
	Slide 53: Help to report on actual DB2 transactions
	Slide 54: Should you be using HiPerf DBATs?
	Slide 55: Summary
	Slide 56
	Slide 57

